SAR: An Algorithm for Selecting a Partition Attribute in Categorical-Valued Information System Using Soft Set Theory
نویسندگان
چکیده
Soft-set theory proposed by Molodstov is a general mathematic tool for dealing with uncertainty. Recently, several algorithms have been proposed for decision making using soft-set theory. However, these algorithms still concern on Boolean-valued information system. In this paper, Support Attribute Representative (SAR), a soft-set based technique for decision making in categorical-valued information system is proposed. The proposed technique has been tested on three datasets to select the best partitioning attribute. Furthermore, two UCI benchmark datasets are used to elaborate the performance of the proposed technique in term of executing time. On these two datasets, it is shown that SAR outperforms three rough set-based techniques TR, MMR, and MDA up to 95% and 50%, respectively. The results of this research will provide useful information for decision makers to handle categorical datasets. DOI: 10.4018/978-1-4666-3898-3.ch016
منابع مشابه
An Algorithm for Selecting a Partition Attribute in Categorical-Valued Information System Using Soft Set Theory
Soft-set theory proposed by Molodstov is a general mathematic tool for dealing with uncertainty. Recently, several algorithms have been proposed for decision making using soft-set theory. However, these algorithms still concern on Boolean-valued information system. In this paper, Support Attribute Representative (SAR), a soft-set based technique for decision making in categorical-valued informa...
متن کاملA novel soft set approach in selecting clustering attribute
Clustering is one of the most useful tasks in data mining process for discovering groups and identifying interesting distributions and patterns in the underlying data. One of the techniques of data clustering was performed by introducing a clustering attribute. Soft set theory, initiated by Molodtsov in 1999, is a new general mathematical tool for dealing with uncertainties. In this paper, we d...
متن کاملGroup Generalized Interval-valued Intuitionistic Fuzzy Soft Sets and Their Applications in\ Decision Making
Interval-valued intuitionistic fuzzy sets (IVIFSs) are widely used to handle uncertainty and imprecision in decision making. However, in more complicated environment, it is difficult to express the uncertain information by an IVIFS with considering the decision-making preference. Hence, this paper proposes a group generalized interval-valued intuitionistic fuzzy soft set (G-GIVIFSS) which conta...
متن کاملArithmetic Aggregation Operators for Interval-valued Intuitionistic Linguistic Variables and Application to Multi-attribute Group Decision Making
The intuitionistic linguistic set (ILS) is an extension of linguisitc variable. To overcome the drawback of using single real number to represent membership degree and non-membership degree for ILS, the concept of interval-valued intuitionistic linguistic set (IVILS) is introduced through representing the membership degree and non-membership degree with intervals for ILS in this paper. The oper...
متن کاملEvaluation of Rough Set Theory for Decision Making of rehabilitation Method for Concrete Pavement
In recent years a great number of advanced theoretical - empirical methods has been developed for design & modeling concrete pavements distress. But there is no reliable theoretical method to be use in evaluation of conerete pavements distresses and making a decision about repairing them. Only empirical methods is used for this reason. One of the most usual methods in evaluating concrete paveme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJIRR
دوره 1 شماره
صفحات -
تاریخ انتشار 2011